
SMC-TR-05-02 AEROSPACE REPORT NO.
TR-2004(8550)-1

Software Acquisition Best Practices:
Experiences from the Space Systems Domain

30 September 2004

Prepared by

R. J. ADAMS, S. ESLINGER, K. L. OWENS, and M. A. RICH
Software Engineering Subdivision

Prepared for

SPACE AND MISSILE SYSTEMS CENTER
AIR FORCE SPACE COMMAND
2430 E. El Segundo Boulevard
Los Angeles Air Force Base, CA 90245

Engineering and Technology Group

-THE AEROSPACE APPROVED FOR PUBLIC RELEASE;

CORPOR- l IN DISTRIBUTION UNLIMITED

El eg nd , alfo ni

This report was submitted by The Aerospace Corporation, El Segundo, CA 90245-4691, under Con-
tract No. FA8802-04-C-0001 with the Space and Missile Systems Center, 2430 E. El Segundo Blvd.,
Los Angeles Air Force Base, CA 90245. It was reviewed and approved for The Aerospace Corpora-
tion by M. A. Rich, Principal Director, Software Engineering Subdivision. Michael Zambrana was
the project officer for the Mission-Oriented Investigation and Experimentation (MOLE) program.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National
Technical Information Service (NTIS). At NTIS, it will be available to the general public, including
foreign nationals.

This technical report has been reviewed and is approved for publication. Publication of this report
does not constitute Air Force approval of the report's findings or conclusions. It is published only for
the exchange and stimulation of ideas.

MC ambrana
SMC/AXE

Form Approved
REPORT DOCUMENTATION PAGE 0MB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Artington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number, PLEASE DO NOT RETURN YOUR FORM
TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

30-09-2004
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

FA8802-04-C-0001

Software Acquisition Best Practices: Experiences from 5b. GRANT NUMBER
the Space Systems Domain

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

R. J. Adams, S. Eslinger, K. L. Owens, and M. A. Rich 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

The Aerospace Corporation
Software Engineering Subdivision
El Segundo, CA 90245-4691 TR-2004(8550)-1

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
Space and Missile Systems Center SMC

Air Force Space Command
2450 E. El Segundo Blvd. 11. SPONSORIMONITOR'S REPORT

Los Angeles Air Force Base, CA 90245 NUMBER(S)

SMC-TR-05-02
12. DISTRIBUTIONIAVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes a comprehensive set of software acquisition best practices that the Software Acquisition MOlE
research team has identified based on their experience with numerous space programs over many years. These best
practices address pre-contract award activities, post-contract award activities, and full life cycle activities for the
acquisition of large, complex, software-intensive systems.

15. SUBJECT TERMS

Software, Software acquisition, Best practices, Software engineering, Software risk management

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF
OF ABSTRACT OF PAGES RESPONSIBLE PERSON

Suellen Eslinger
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE

34 NUMBER (include area

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED code)

(310)336-2906

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

Acknowledgements

The preparation of this report was funded by the Mission-Oriented Investigative Experimentation
(MOLE) program's Software Acquisition task. The authors wish to thank their USAF Space and Mis-
sile Systems Center counterpart and MOIE sponsor, Mike Zambrana (SMC/AXE, Directorate of
Systems Engineering) for his valuable input and support.

The authors also wish to thank the following members of the Software Engineering Subdivision for
graciously providing their time and effort to review the paper and provide valuable input.

Linda A. Abelson, Engineering Specialist, Software Acquisition and Process Office

John C. Cantrell, Senior Engineering Specialist, Software Architecture and Engi-
neering Department

Peter Hantos, Senior Engineering Specialist, Software Acquisition and Process Office

111ii

Contents

1. In trod u ction .. 1
2. Definition of Software Acquisition Best Practices .. 3

2.1 Software Acquisition Processes ... 3
2.2 Characteristics of Software Acquisition Best Practices .. 4

3. The Space Systems Software Acquisition Best Practices Roadmap 5
3.1 Pre-Contract Award Space System Software Acquisition Best Practices 5
3.1.1 Establishing the Program Baseline ... 6
3.1.2 Obtaining Contractual Insight ... 9
3.1.3 Obtaining Contractual Commitment ... 11
3.1.4 Selecting a Capable Software Contractor Team ... 13
3.1.5 Providing Tools for Contract Management ... 16
3.1.6 A Software Acquisition Best Practice Contract ... 18
3.2 Post-Contract Award Space System Software Acquisition Best Practices 19
3.2.1 Performing Technical Product Reviews .. 19
3.2.2 Performing Software Process Reviews .. 21
3.2.3 Managing the Contract .. 22
3.3 Full Life Cycle Software Acquisition Best Practices .. 25

4 . C onclusions .. 29
R eferen ces ... 3 1
Acronyms and Abbreviations .. 33

Figures

1. Software acquisition and software engineering domains .. 3
2. Space systems software acquisition best practice roadmap ... 5
3. A "typical" software acquisition best practice contract .. 18

v

1. Introduction

Prior to the acquisition reform movement of the mid to late 1990s, DoD system acquisition used a
highly structured paradigm based upon detailed system requirements specifications, military stan-
dards compliance, and formalized deliverable technical documentation using detailed Data Item
Descriptions (DIDs), which often required Government approval. During the 1990's acquisition
reform movement, the acquisition environment underwent a radical change from this very structured
paradigm to a "faster, better, cheaper" philosophy based upon high-level system objectives and per-
formance specifications, commercial standards, contractor-determined processes, and few, if any,
deliverable technical documents.

The lessons learned over many years of system acquisition had been captured in the military specifi-
cations, standards, and DIDs in use prior to the 1990's acquisition reform movement. These lessons
were essentially discarded by acquisition reform with the cancellation of military standards, the pro-
hibition of the use of any process standards on contracts, the deletion of virtually all technical deliver-
able documentation, and the introduction of new concepts such as Total System Performance Respon-
sibility (TSPR). The acquisition reform practices were based on the belief that eliminating perceived
excessive contractual requirements would result in the achievement of the "faster ,better, cheaper"
objectives. Recent experiences with failures on software-intensive acquisition reform programs have
proved this belief to be false.

Acquisition policy has recently undergone another major change with the approval of a new series of
DoD 5000 policy documents, a new capabilities generation process (replacing the former require-
ments generation process), and new acquisition policy unique to space systems. Many previous
restrictions imposed under acquisition reform have been lifted. During the transition to these
changes, space system programs began asking for guidance on the "right" set of system acquisition
practices that they should be using.

The acquisition of large, complex, software-intensive systems has historically been fraught with
major problems, including performance deficiencies, extensive software defects, and cost and sched-
ule overruns. With the focus on new acquisition practices, the opportunity exists for identifying and
implementing a comprehensive set of software acquisition best practices designed to reduce risk in
the acquisition of software-intensive systems. The solution, however, is not as simple as returning to
the practices in use prior to acquisition reform. This report describes a comprehensive set of software
acquisition best practices developed by the authors based on experiences in the space systems
domain.

2. Definition of Software Acquisition Best Practices

2.1 Software Acquisition Processes

The term "software acquisition" is defined to mean the set of processes (i.e., the methods, tools, tech-
niques, procedures, etc.) used by the Government to acquire the software portion of software-
intensive systems. Software acquisition covers the activities of the entire program life cycle, from the
identification of needed capability through system retirement, including pre-contract award and post-
contract award activities through all program life cycle phases. The term "software engineering," on
the other hand, is defined to be the set of processes used by the developers to build the software por-
tion of software-intensive systems. Figure 1 illustrates the different domains of software acquisition
and software engineering.

One of the principal components of a successful software development project is the quality of the
software engineering processes used. This statement is based on the well-established fact that the
quality of a software product is highly dependent upon the quality of the processes used to develop
and maintain that product [Paulk, M. et al., 1994, p. 8]. However, software acquisition processes are
also very influential in achieving a successful software development project. The software acquisi-
tion processes used can positively encourage, or adversely constrain, the developers in their applica-
tion of high-quality software engineering processes to a software development effort. The application
of software acquisition best practices, therefore, can reduce risk in the acquisition of software-
intensive systems.

Software AcquisitionG Sytem Domain Syte

V Engin~eerinig Engineering~

R ii HfW Acq <> Ac
N Acq4 Acq cAq
M rocesses PoeseE

N ,. . FPT Pre Contract 1 1,t~ "', •Post Contract'

c '- -- ' Proposal CI
0

R Software Engineering

Domain
Figure 1. Software acquisition and software engineering domains.

3

2.2 Characteristics of Software Acquisition Best Practices
Software acquisition best practices are, by definition, practices that people with recognized software
acquisition expertise have identified through experience as being significant contributors to the suc-
cessful acquisition of software-intensive systems. Both negative experiences and positive experi-
ences on past programs can be used to identify software acquisition best practices. However, care
must be taken when using negative experiences so as not to be trapped by logical fallacies. If practice
"A" is used, and the resulting experience "B" is not desirable, this does not imply that if practice "A"
is not used, then "B" will not occur and the resulting experience will be desirable. (A => B is not
equivalent to Not A => Not B.)

Since best practices are experientially based, a best practice has never been proven to be "best" in any
analytical sense. Best practices also never form an exhaustive set; there is always the possibility of
additional best practices being identified. In addition, they are not static. Best practices change based
on new experiences and new technologies.

A comprehensive set of software acquisition best practices must provide a consistent and integrated
approach to software acquisition throughout the program life cycle, both pre- and post-contract
award. In addition, because software always exists within the context of the system, the software
acquisition best practices must be consistent and integrated with a comprehensive set of system
acquisition best practices. Finally, the set of best practices must be suitable for acquiring today's
complex software systems that will be developed using the latest software development process and
product technologies.

Today's software-intensive space systems are large systems with multiple-satellite constellations and
multiple ground elements, frequently worldwide. These systems involve complex combinations of
hardware and software with complex external and internal interfaces. They are usually unprece-
dented and have high reliability and integrity requirements. The size of the software in space systems
now under development is on the order of 050 Source Lines of Code (SLOC) onboard and 106 to 10,

SLOC on the ground. Space systems software acquisition best practices must be able to effectively
support the acquisition of these systems.

A comprehensive set of space system software acquisition best practices satisfying the above criteria
has been developed by the authors based on experiences from the space systems domain. This set of
software acquisition best practices was synthesized from the authors' experiences supporting the
United States Air Force (USAF) Space and Missile Systems Center (SMC) and the National Recon-
naissance Office (NRO) in the acquisition of software-intensive space systems over a 20-year period.
The authors have over 60 collective years of experience in the acquisition of software-intensive space
systems while at The Aerospace Corporation, in addition to substantial prior experience in industry
developing space and similar software-intensive systems.

4

3. The Space Systems Software Acquisition Best Practices Roadmap

The recommended set of 24 space system software acquisition best practices is organized into ten
categories, as shown in Figure 2. Five of these categories address pre-contract award activities, three
address post-contract award activities, and two cover activities performed throughout the entire pre-
and post-contract award periods.

Each of these categories of best practices is described in more detail below. This report, however, is
not intended to be a tutorial in the application of these best practices. Rather, it briefly describes the
best practices, the rationale for their inclusion, and essential elements for their effective application.
It should be noted that the recommended software acquisition best practices are not independent of
each other; in fact, effective use of a particular software acquisition best practice may require concur-
rent use of other software acquisition best practices.

3.1 Pre-Contract Award Space System Software Acquisition Best Practices
The pre-contract award space system software acquisition best practices address the following areas:
establishing the program baseline, obtaining contractual insight, obtaining contractual commitment,
selecting a capable contractor team, and providing contract management tools. The best practices in
each of these areas are discussed in the following paragraphs. In addition, a typical software acquisi-
tion best practice contract that embodies these best practices is described.

Software Acquisition Domain
S~Software Acquisition Risk Management

Software-]Incl us ive Systems Acquisition

G

0 Establish Program Baseline Perform Technical Product Reviews
V
E Obtain Contractual Insight Perform Software Process Reviews
R Obtain Contractual Commitment Manage the Contract
NM Select Capable Contractor Team
E Provide Contract Management Tools
N TI

T Pre Contract tCotrc

Contractor

Software Engineering Domain
Figure 2. Space systems software acquisition best practice roadmap.

5

3.1.1 Establishing the Program Baseline

There are three software acquisition best practices associated with establishing the program baseline

as described below.

Include Software in System Performance Requirements

This best practice involves the inclusion of software in the specification of the system
performance requirements for the software-intensive system to be developed. Exam-
ples of performance requirements that should have both hardware and software com-
ponents specified are specialty engineering requirements (including dependability,
reliability, maintainability, and availability (DRMA); supportability, including test-
ability and integrated system diagnostics; safety; security; and human systems inte-

gration); Key Performance Parameters (KPPs) (e.g., mission performance timelines,
accuracies); computer resource reserves (especially onboard margins for processor
throughput, memory, storage, and communication bandwidth); and interoperability
(including open systems interface requirements). The most effective application of
this best practice requires the participation of acquisition team 2 personnel knowledge-

able in specifying software-inclusive system performance requirements in the system

performance requirements definition process.

Since the system performance requirements become the contractual requirements, it

is very important that they have a complete system perspective, including both hard-
ware and software. The system performance requirements should not be specified so
as to only reflect the hardware contribution. For example, including software in the

system availability requirements will help ensure that the availability actually experi-

enced during operations will meet the specified requirements. When availability
requirements include only hardware, the operationally experienced availability will
be significantly less than specified in the requirements due to failures or inefficien-
cies caused by software. This can result in the software-intensive system not being
suitable for operations.

Perform Software Architecture-Inclusive Trade Studies

This best practice involves the inclusion of the software architecture along with and
as an integral part of the system architecture trade studies. Architectural decisions
made in isolation from the software implications of those decisions can adversely
affect program executability in terms of the ability to develop the required software
within the program's cost and schedule baseline. Decisions that involve software as
well as hardware include space-ground and hardware-software allocation trades,
onboard computer hardware sizing, and reuse of major legacy system components.

2 The Government software acquisition team for most space systems consists of Government personnel (military and
civilian), Federally Funded Research and Development Center (FFRDC) personnel and personnel from Systems Engineering
and Technical Assistance (SETA) contractors. To simplify terminology, the term "acquisition team" will be used
throughout this report to refer to members of the Government software acquisition team, unless the context requires different
terminology for clarity.

6

Of particular importance is performing a cost-benefit trade study for reusing legacy
software that considers architectural constraints of the legacy software, re-engineer-
ing needed, and life cycle maintenance implications. The most effective application
of this best practice requires the participation of acquisition team personnel knowl-
edgeable in space system software architecting along with the space system hard-
ware-knowledgeable engineers.

Including software architecture as an integral part of the system architecture trade
studies supports the establishment of a robust, integrated Government hard-
ware/software architecture baseline, which is essential in order to obtain an accurate
cost and schedule estimate for the entire system to be developed. If the hardware and
software architectures are not integrated and consistent with each other, the cost and
schedule estimates most likely will be too low since there is a high probability that an
inconsistent, non-integrated architecture will not satisfy all of the system require-
ments. The software portion of the integrated hardware/software architecture base-
line must address Commercial Off-the-Shelf (COTS), reuse and newly developed
software for all space and ground elements.

Determine Realistic, Independent Baseline Software Estimates

This best practice involves making realistic software size, effort, cost, and schedule
estimates based upon the system's software architecture, valid software historical
data, and the appropriate use of software cost models. The contractual cost and
schedule constraints imposed by the Government upon the contractor must then be
based upon these realistic software cost and schedule estimates.

In the program's early acquisition life cycle phases, software cost and schedule esti-
mates should be based upon the acquisition team's software architecture baseline and
historical data collected on similar past programs. Later in the acquisition life cycle,
updates to the Government's software cost and schedule estimates can incorporate
the contractor's 3 evolving software architecture and judicious use of data collected
from the actual software development effort. Care should be taken to ensure that the
Government's estimates include all work that must be accomplished and all costs that
must be incurred in order to develop the software portion of the software-intensive
system for the entire development life cycle, from system requirements definition
through transition to operations and maintenance. This includes efforts for develop-
ing new software, re-engineering reuse software, and integrating the new, reuse, and
COTS software into the system. Work not easily estimated by standard software cost
models must also be included (e.g., graphical user interface screen development,
database population, knowledge base population). Finally, realistic estimates of cost
and schedule risk must be included in the cost and schedule estimates based on the

3 Large, complex space systems usually require a large contractor team consisting of the prime contractor and multiple team
members (e.g., subcontractors, other intra-corporate organizations, vendors). To simplify terminology, the term "contractor"
will be used throughout this report to refer to the entire contractor team, unless the context requires different terminology for
clarity.

7

uncertainty in the parameters input to the estimating process. Software cost and

schedule risk are always large in the program's early acquisition phases when it is not

possible to accurately estimate the software size.

An important part of this best practice is that the Government's software cost and

schedule estimates should be independent; that is, the acquisition team should per-

form its own software cost and schedule estimation and not rely solely upon the con-

tractor's estimates. Data from the contractor should provide important input into the

acquisition team's estimation process. However, the independence of the acquisition
team's estimates is necessary to eliminate the biases present in the contractor's esti-

mates (e.g., underestimation of amount of new code to be developed, overestimation

of amount of COTS and reuse code, overly optimistic parameters used in the

software cost models, and overly optimistic productivity data).

Realistic software cost and schedule estimation not only increases the predictability

of the cost and schedule, and, therefore, decreases the probability of overruns; it also

contributes to improved quality of the software product. Sufficient time and effort to

develop the software products, including performing the quality checks and correct-

ing any identified defects, are essential to reducing downstream rework. When

extreme cost or schedule constraints are imposed upon the developer, neither the cost

nor the schedule is likely to be met. In addition, the resulting cost or schedule pres-

sure will cause poor software product quality since the contractual cost or schedule

constraints will force the developer to take shortcuts in the software development

processes. According to the DoD Software Program Manager's Network, "attempts

to compress a schedule to less than 80% of its nominal schedule aren't usually

successful" [DoD Software Program Manager's Network, p.22].

Realistic software cost and schedule estimation is especially critical for defining a

feasible evolutionary acquisition strategy. Defining the capabilities allocated to the

evolutionary blocks without consideration of the software that must be developed to

support each block can lead to a program that is not executable. For space systems in

particular, defining the capabilities strictly in terms of the space segment can lead to a

situation where nearly all of the ground software (millions of SLOC) must be devel-

oped in the first evolution to support the first block of satellites, resulting in severe

up-front cost and schedule constraints for this software that cannot be met.

3.1.2 Obtaining Contractual Insight

There are three software acquisition best practices associated with obtaining contractual insight as

described below.

Require Key Software Technical and Management Deliverables

This best practice involves requiring key software technical and management prod-

ucts as contract deliverables (i.e., as Contract Data Requirements List (CDRL)

8

items). Requiring this documentation to be delivered ensures that the contractor
actually performs the work necessary to prepare these critically important products
and that the contractor performs this work according to a minimum defined standard
(i.e., the DID). It also ensures that the acquisition team has the visibility it needs into
the evolving state of the software development effort and enables the acquisition
team to perform in-depth technical reviews of the delivered products.

Clearly not all software products should be formally delivered to the Government by
the contractor. The software products recommended for formal delivery consist of
those with the highest risk reduction potential. Three types of software products are
recommended for formal delivery. The first type consists of plans and reports that
provide the acquisition team with a thorough understanding of how the software
development project is being managed and of what the actual state of the software
development effort is throughout the life cycle. The Software Development Plan
(SDP), the most important of the planning documents, should be an integrated plan
covering all of the software development being performed by all members of the
contractor team. Other important planning documents are the Software Master Build
Plan, which specifies the contents of each build of software when using iterative
software development life cycle models (e.g., the spiral model), and the Software
Transition Plan, which describes the planning for transitioning the software to opera-
tions and maintenance. Periodic metrics reports (e.g., monthly) in addition to other
periodic management reporting provide additional insight into the status of the soft-
ware development effort and the state of the evolving software product.

The second type of deliverable software products consists of the software require-
ments, architecture, and test products. Delivery of these technical products reduces
risk because of increased contractor emphasis on performing the activities to produce
these products and because of expected defect reduction from acquisition team tech-
nical reviews. Since the software requirements drive the entire software development
effort, specifying and documenting the software requirements (including the software
interface requirements) in a clear and well-organized manner will assist both the con-
tractor and the acquisition team in analyzing these requirements for correctness,
completeness, and consistency. A well-defined and documented software architec-
ture, including multiple architectural views that describe various aspects of the
architecture, is another critically important technical product for risk reduction since
the software architecture provides the framework for all subsequent software design
and development. Similarly, developing formal verification test plans, procedures,
and reports for the software and interface requirements helps ensure that these
requirements are being adequately verified, and thus reduces risk by helping to
ensure that the software performs as specified.

The third type of deliverable software products consists of documented information
essential for delivery, installation, operations, and maintenance of the software prod-
ucts. The exact set of documents needed in these areas is program-unique, depending
upon the requirements of the users and operators for operational documentation, the
acquisition strategy for software maintenance, and the site requirements for delivery

9

and installation. Examples of these products are Version Description Documents,
Software Installation Guides, Software User's Manuals, Operator Positional Hand-
books, Software Maintenance Manuals, Software Product Specifications, and training
materials.

Change control and baseline management of these important products are critical
contractor activities. It is especially important that changes to the software require-
ments, architecture, and test products be strictly managed as the software develop-
ment effort proceeds. Deliveries of updates to the deliverable software products at
significant milestones and as changes occur should be required in the contract.

Requiring Government approval for deliverable products is an additional mechanism
that can be used to help ensure that the contractor produces high-quality deliverable
software products. The following types of software products, at a minimum, are rec-
ommended for approval coding: plans (especially the Software Development Plan
and Software Transition Plan), requirements (Software and Interface Requirements
Specifications), test documents (Software Test Plans and Reports), and operations
and maintenance documentation (e.g., the Software Product Specifications and Soft-
ware User's Manuals).

Electronic delivery is the preferred mechanism for all deliverable products. The fol-
lowing best practice discusses this in more detail.

Require Timely Electronic Access to All Software Products

There are a large number of software products prepared during any software devel-
opment effort that are not included in the set recommended for delivery. Some
examples of these products are the detailed design information, the evolving software
code, unit test documentation, build scripts, and software integration test documenta-
tion. In addition, all software products (both deliverable and non-deliverable) gener-
ally go through interim versions that are internally reviewed before the product is
finalized. A mechanism needs to exist whereby the acquisition team can examine
any interim or final software products without having them formally delivered. On
most development efforts, there are critical, high risk areas of the software where
evaluation of the non-deliverable software products is needed. In addition, there is
frequently the need for the acquisition team to examine areas of the software where
significant problems have been found.

The recommended mechanism for achieving this insight is to include an electronic
access clause in the contract requiring the contractor to establish a mechanism for the
customer to be able to access any technical or management interim or final products
produced under the contract. The electronic access clause needs to also require that
the Government have timely access to these products since any significant delay to
access impedes the potential risk reduction benefit of the acquisition team's review.

10

Such clauses are in common use at SMC. In addition, the contract needs to require

all CDRL items to be delivered electronically.

Require Software Level Technical and Management Reviews

This best practice involves contractually requiring software-level technical and man-
agement reviews in addition to the system- and program-level reviews. Most current
contracts for space systems require major system reviews (e.g., System Design
Review (SDR), System Preliminary Design Review (PDR), System Critical Design
Review (CDR), System Test Readiness Review (TRR)). These major system reviews
provide little opportunity to review the details of the software architecture, design,
and test readiness.

Software-level technical reviews are needed to ensure that all stakeholders in the
software development (e.g., system users and operators; the acquisition team; con-
tractor systems engineers; and contractor hardware, software, and test engineers)
receive technical information about the evolving software products at a sufficient
level of detail to find defects and reduce risk. Most software development is now
performed using iterative software life cycle models, such as the incremental or spiral
models. Using iterative life cycle models, the software is developed in a sequence of
builds, each of which adds capability to the preceding build, and each build consists
of portions of the Computer Software Configuration Items (CSCIs). Software-level
technical reviews, therefore, need to be performed for each build, rather than for
completed CSCIs.

Periodic software-level management reviews are also important for understanding the
actual state of the evolving software product. Program management reviews and
Integrated Product Team (IPT) meetings too frequently have the unfortunate charac-
teristic of being hardware focused. Contractually requiring software-level manage-
ment reviews will ensure that the program management reviews and IPT meetings
include software to a level of importance commensurate with its risk.

3.1.3 Obtaining Contractual Commitment
There are two software acquisition best practices associated with obtaining contractual commitment
as described below.

Mandate Compliance With a Robust Full Life Cycle Software Development Standard

This best practice involves contractually mandating compliance with a robust full life
cycle standard for software development that is suitable for developing software-
intensive systems with high reliability and integrity requirements. A robust full life
cycle software process standard defines the software development life cycle activities
that must be performed and the tasks that must be accomplished for each of those
activities. It also specifies the required minimum content of the most important soft-

11

ware development products produced by those activities. Rigorous adherence to a
robust full life cycle software standard can result in a higher quality software product
since it increases the probability that all necessary software engineering tasks will be
accomplished and all necessary engineering work will be performed. Requiring con-
tractual compliance with such a standard reduces the possibility of the contractor
cutting comers that would result in increased risk to achieving a successful software
acquisition.

A joint SMC/NRO Software Process IPT, as part of the SMC/NRO Mission Assur-
ance Improvement Task Force, has recently completed a study of full life cycle soft-
ware development standards. Based on this study, EIA/IEEE J-STD-016-1995, the
commercial version of MIL-STD-498, was recommended for use as a compliance
document on SMC and NRO contracts for software-intensive space systems. This
standard specifies a rigorous set of software development activities and products that
are suitable for developing high-assurance software, such as that in space systems.
Since this standard specifies only "what" must be performed, not "how" it must be
performed, it can be used with any software development methods and tools. The
software Process IPT also developed tailoring that should be applied when using J-
STD-016 on contracts [Adams, R. J. et al., 2004a]. In addition, the IPT prepared a
software standard based on MIL-STD-498 with this tailoring incorporated that can be
used on SMC and NRO contracts instead of the tailored J-STD-016 [Adams, R. J. et
al., 2004b].

Require Contractor Commitment to the Software Development Plan

This best practice involves having the contractor contractually commit to following
their SDP. This can be accomplished contractually in several ways. The SDP can be
cited as a compliance document in the contractor's Integrated Management Plan
(IMP) or in the Statement of Work (SOW). Both the IMP and the SOW eventually
become part of the contract. With a contractually compliant SDP, the initial version
and any subsequent modifications should require approval by the Government before
being put on the contract. This will help ensure that the SDP defines sufficiently
high-quality software engineering processes to support development of the required
software.

The SDP describes the contractor's plans for accomplishing the software portion of
the contract and contains the results of both qualitative and quantitative planning for
the software development effort. It identifies the software to be built and the charac-
teristics of that software that drive the planning process (e.g., size, type). It describes
the technical and management activities to be performed, and the processes, methods,
and tools to be used for each. It specifies the life cycle model (or models) to be used
and their associated sequencing of activities. It allocates roles and responsibilities for
all of the software development work to be performed. The SDP also provides (usu-
ally by reference to information stored in program management tools) the software
development top level and detailed schedules with critical paths and the required
effort by job category over time. In addition, it describes any other resources (e.g.,

12

facilities, computer hardware, tools) necessary to perform the software development.
The SDP needs to be an integrated plan covering all of the software development
being performed by members of the contractor team. It is especially important that
the SDP specify a well-defined set of processes for those activities that cross team
member boundaries.

The SDP thus contains the details as to how the contractor intends to perform the
required software development effort and is complementary to the full life cycle
standard described above, which specifies what must be performed. Since the quality
of the software products is highly dependent upon the quality of the processes used to
develop them, adherence to mature, well-disciplined software engineering processes
is essential to delivery of a high-quality software-intensive system. Contractual
commitment to both the robust full life cycle standard and the SDP helps to ensure
that the contractor will consistently use high-quality software engineering processes
throughout the contract.

3.1.4 Selecting a Capable Software Contractor Team
There are three software acquisition best practices associated with selecting a capable software con-
tractor team as described below.

Perform a Software Capability Appraisal as Part of the Source Selection

This best practice consists of performing a formal appraisal of the contractor's soft-
ware development capability as part of the source-selection process. The primary
purpose for performing a software capability appraisal is to increase the likelihood of
selecting a contractor team that is capable of developing the required software within
the program constraints. It is well established that risk in software development is
reduced by selecting a contractor with mature software engineering processes. A
secondary purpose for performing a software capability appraisal is to identify risks
associated with the selected contractor to facilitate managing these risks beginning at
contract award. Another secondary purpose is to obtain a contractual commitment
from the selected contractor to adopt processes that instill and support effective soft-
ware engineering discipline.

For a software capability appraisal to be effective as a discriminator among the offer-
ors, the appraisal must occupy a position of sufficient importance in the source selec-
tion evaluation criteria. It is strongly recommended that the software capability
appraisal be its own separate subfactor within the Mission Capability factor, and that
the weight of this subfactor be commensurate with the program's software risk. This
position of software in the Mission Capability factor also allows the Past Perform-
ance factor to include relevant software development performance for the prime con-
tractor and significant software team members.

13

Two principal methods have been used in the past for performing formal software
capability appraisals: the Software Engineering Institute's (SEI's) Software Capabil-
ity Evaluation (SCESM), which is based upon the Capability Maturity Model® for
Software (SW-CMMO), and the USAF's Software Development Capability Evalua-
tion (SDCE).3 Both methods have proven to be effective tools for obtaining insight
into the offerors' software development processes, and both methods provide
strengths, weaknesses, and risks for use in the source selection evaluation.

Recently the new Capability Maturity Model Integration" (CMMI1) models were
introduced that are replacing the SW-CMM.4 A new appraisal method is used with
the CMMI models, the Standard CMMI Appraisal Method for Process Improvement
(SCAMPISM).5 The currently defined SCAMPI appraisal method is a "Class A"
method that is very time consuming and resource intensive, and therefore not easily
used during the source selection process. An SEI initiative is currently in progress to
define "Class B" and "Class C" SCAMPI appraisal methods that are less time
consuming and resource intensive. These methods, which are expected to be avail-
able in Fall 2004, promise to be useful for performing software capability appraisals
during source selection.

Whatever method is used for performing the software capability appraisal, there are
two important attributes that the appraisal must have in order to meet its primary
objective of selecting a contractor that is capable of developing the required software
within the program constraints. First, the appraisal must evaluate the processes pro-
posed for use by the contractor on the program under bid. It is not sufficient to
evaluate corporate process descriptions and processes used on past programs since
the processes proposed for this program may be quite different. Second, the appraisal
must evaluate the contractor as a team, not each team member individually. The set
of team members with software development responsibility must have well-
integrated processes in order to perform effectively as a team.

It should be emphasized that applying this best practice means that the acquisition
team performs a formal appraisal of the offerors as part of the source selection. The
contractor's SW-CMM or CMMI levels previously obtained by self appraisal (using
internal staff or personnel hired by the contractor as the appraisal team members)
should never be used as a substitute. A contractor's self appraised level is frequently
higher than the level at which the organization as a whole is actually performing due
to the ability to "cherry pick" the projects used for the appraisal. In addition, an
existing self appraisal will not have been performed on the processes proposed for the
specific program under bid and is limited to a single contractor organization, not the
entire bidding team.

3 SCE is a service mark of Carnegie Mellon University (CMU). CMM and Capability Maturity Model are registered in the
U.S. Patent and Trademark Office by CMU.
4 CMMI and Capability Maturity Model Integration are registered in the U.S. Patent and Trademark Office by CMU.
5 SCAMPI is a service mark of CMU.

14

Evaluate Software Architecture with System Design

This best practice involves evaluating the contractor's proposed software architecture
as part of the evaluation of the proposed system architectural design during source
selection. The Government evaluates the proposed space system design as an
important, highly weighted part of the source selection evaluation criteria (e.g., as a
subfactor of the Mission Capability factor) in virtually every space system design or
development contract. The most effective application of this best practice requires
the joint participation by acquisition team personnel knowledgeable in space systems
software architecting as well as space system hardware-knowledgeable engineers in
this part of the source selection evaluation.

For software-intensive space systems, software is an integral part of the space system
design, equally important to hardware. Large inadequacies and risks in a proposed
space system design can be underestimated or missed entirely if the evaluation does
not include the software portion of that design. Care must be taken in developing the
RFP to ensure that the source selection evaluation criteria appropriately address the
major hardware and software architecture issues important to the program. Examples
of such issues are space-ground trades, hardware-software allocations of system
requirements, onboard processing requirements, and appropriateness of reuse of leg-
acy system components. The expertise gained in developing a robust, integrated
Government hardware/software architecture baseline (see paragraph 3.1.1) will pro-
vide a good foundation for defining a set of source selection evaluation criteria that
fully addresses the program's major hardware and software architecture issues and
risks.

Evaluate Realism of Cost and Schedule Bids

This best practice involves evaluating the realism of the contractor team's proposed
software cost and schedule for the software-intensive system under bid. Cost and
schedule are always important factors in any source selection. This is one area, how-
ever, where less is not necessarily better! Unquestioning acceptance of unreasonably
low software cost and schedule bids will not only lead to contract overruns; it will
also result in a poor quality software product since the contractor will take shortcuts
in software quality enhancing activities (e.g., peer reviews, robust software testing) in
order to meet the contractual cost and schedule constraints.

The application of this best practice requires that the acquisition team perform a
detailed evaluation of the assumptions underlying the software cost and schedule
estimates during the source selection process. Low estimates of new lines of code,
large amounts of reuse and COTS software, high productivity estimates, and overly
optimistic cost drivers being used in the software cost models all must be examined
for realism. In addition, the software cost estimate must be examined to determine
whether all software-related effort has been included, especially those items not eas-
ily estimated using software cost models. Furthermore, the systems engineering,

15

program management, and integration and test effort related to software must be
examined for adequacy. Since these activities are usually estimated by taking a per-
centage of the development effort, an unreasonably low estimate of software devel-
opment effort will lead to an inadequate amount of effort being applied in these other
important areas. The expertise gained in developing a realistic, independent Gov-
ernment baseline of software size, effort, cost, and schedule estimates (see paragraph
3.1.1) will provide the foundation for performing this detailed evaluation of the soft-
ware cost and schedule bids during source selection.

3.1.5 Providing Tools for Contract Management
There are two software acquisition best practices associated with providing tools for contract man-
agement as described below.

Provide Contract Incentives for Software Quality, Not Just Cost and Schedule

This best practice involves the use of award fees and other contractual incentives to
reward software quality by positively motivating the contractor to use software engi-
neering best practices. The use of the term "quality" in this context means producing
software work products that require very little, if any, rework in successor activities.
The application of this best practice requires building criteria related to software
quality into the contractual award and incentive fee plans.

Award fee is generally given at predetermined time intervals throughout the contract
duration. Award fee should be used to reward the contractor for adherence to their
defined software processes and for implementing software process improvement on
the program to improve the effectiveness of their processes. Award fee should also
be used to reward the contractor for producing high-quality software products, i.e.,
products with low rework rates in subsequent activities. The contractor should also
be rewarded for the timeliness and adequacy of their responsiveness to comments
from acquisition team software product and process reviews. Incentive fees based on
performance of the delivered software product in its operational environment can also
be used to positively motivate the use of software engineering best practices during
development. Incentive fees post-delivery or -launch can be based upon meeting
system performance measures that include both hardware and software (e.g., system
reliability and availability) during operations. Incentive fees can also be based upon
defect removal effectiveness measures such as the ratio of the number defects found
during development to the number of defects found during operations.

Frequently, programs include target cost and schedule incentives without also
including quality incentives. The more constrained the contractual target cost and
schedule, the more likely there are to be large incentives dependent upon meeting
those constraints. Having target cost and schedule incentives without also having
product quality incentives sends the message to the contractor that product quality is
not important to the Government. The contractor will then be motivated to take
shortcuts in their software development processes to earn the associated incentives,

16

such as by reducing the effort spent on quality enhancement activities (e.g., peer
reviews, software quality assurance reviews) and reducing the robustness of the test
program. Such shortcuts are always counterproductive since the associated increase
in latent defects will eventually result in increased cost and schedule due to increased
rework and the necessity for operational workarounds. The Government should be
especially concerned about cost and schedule incentives that result in infeasible cost
and schedule constraints for the software development effort.

Effective application of this best practice requires commitment from the Government
in their execution of the software quality incentives. The Government must be will-
ing to allocate sufficient amounts of funds to the software quality portion of the
award fees and incentives so that the contractor is significantly rewarded for use of
software engineering best practices. In addition, the Government should also ensure
that the contractor is significantly penalized for process non-compliance and poor
quality software products. Independent technical reviews of software products and
processes by the acquisition team (see paragraphs 3.2.1 and 3.2.2) are effective
mechanisms for providing input on software product and process quality to the award
fee process.

Mandate Periodic Team Software Capability Appraisals

This best practice involves requiring periodic formal software capability appraisals of
the contractor during the contract period of performance. The objective of this best
practice is to ensure that the contractor is actually using their defined software devel-
opment processes and is applying software engineering best practices on the software
being implemented for the program. The requirement for the contractor to undergo
periodic software capability appraisals must be contained in the contract. There are
several places one can implement this in a contract, such as in the SOW or in a con-
tract special provision (Section H). In any case, for this best practice to be most
effective, the results of the appraisals and the timeliness and adequacy of any result-
ing improvement actions must be coupled to the award fee and included in the award
fee plan.

The contract must specify the frequency with which the appraisals are to be per-
formed and the appraisal technique to be used to allow the contractor to accurately
bid the time and effort needed. Appraisals used to evaluate the contractor's software
development processes that are actually being used on a contract are called "contract
process monitoring" appraisals. The same appraisal methods are used for contract
process monitoring as for source selection (see paragraph 3.1.4). Thus, the choices
currently consist of the SCE and SDCE and are soon expected to include the
SCAMPI "Class B" and "Class C" appraisals. As with a software capability
appraisal performed during source selection, the contract process monitoring apprais-
als must evaluate the contractor as a team, not each software team member
individually.

17

3.1.6 A Software Acquisition Best Practice Contract
The performance of many of the pre-contract award software acquisition best prac-
tices described in paragraphs 3.1.1 through 3.1.5 above requires the inclusion of
appropriate requirements in the contract. Figure 3 shows the various sections of a
typical DoD contract and which best practice requirements are included in each
section.

In some procurements, the Government includes a Statement of Objectives (SOO) in
the RFP package but does not include a Government-prepared SOW. The contractor
is then asked to prepare a Contractor Statement of Work (CSOW) in addition to the
IMP for inclusion in the contract. In this case, the best practice requirements allo-
cated to the IMP/SOW in Figure 3 would be included in some portion of the RFP
package other than the Government SOW, such as the SOO or the Special Provisions.
Care must be taken during the source selection to review the IMP and CSOW to
ensure that they contains all of the necessary tasks and events to support these best
practice requirements.

IMP/ Contractual Deliverable
SSystem Data
Requi~rementsr -eurements-

"* Comply with SDP * Software-inclusive * Software plans
"* Hold software technical system requirements - Reqs & architecture

reviews • Test documentation
"* Undergo periodic software - Metrics reports

capability appraisals - O&M documentation

Special Compliance Icwarti

Provisions Documents Incene ve

"* Electronic access to all - Software • Software quality
software products development incentives

"* Access to prime & process standard • Results of periodic
subcontractor software (e.g., J-STD-016) software capability
technical & mgmt data appraisals

Figure 3. A "typical" software acquisition best practice contract.

18

3.2 Post-Contract Award Space System Software Acquisition Best Practices

The post-contract award space system software acquisition best practices address performing techni-
cal product reviews, performing software process reviews, and managing the contract. The best prac-
tices in each of these areas are discussed in the following paragraphs. Many of these best practices
involve using contractual elements established by the pre-contract award best practices described in
paragraph 3.1 and its subparagraphs.

3.2.1 Performing Technical Product Reviews
There are three software acquisition best practices associated with performing technical product
reviews as described below.

Perform In-Depth Technical Reviews of Software Products

This best practice involves the acquisition team performing in-depth technical
reviews of the contractor's software products throughout the development life cycle.
While the ideal would be to perform in-depth technical reviews of all of the key
software products, in practice, this is generally not feasible due to the limited acquisi-
tion team workforce. Therefore, the acquisition team's technical resources must
focus on the areas of the software development effort with highest technical risk. An
effective software acquisition risk management process (see paragraph 3.3) is
required to adequately define those risk areas. Results of reviewing a sampling of
software products can be used to predict quality trends across all software products
produced by the same software team member.

The objective of in-depth technical reviews of the contractor's software products is to
assist in identifying defects in the software products. Technical reviews of software
products by the acquisition team generally identify defects not found by the contrac-
tor's quality checks (e.g., defects due to misinterpretations of requirements, defects
due to incorrect use of new technologies, defects due to lack of attention to opera-
tions and sustainment issues). This is due to the difference in perspective of the
acquisition team compared to that of the contractor's development personnel.

A good working relationship and good communication between the acquisition team
and the contractor's software developers will enhance the effectiveness of the techni-
cal reviews of software products. The most effective application of these technical
reviews occurs when the results of the acquisition team's reviews are used by the
contractor to correct and improve their products. This behavior on the part of the
contractor can be motivated by rewarding quality via award and/or incentive fees (see
paragraph 3.1.5).

19

Monitor Software Integration and Verification Adequacy

This best practice involves the acquisition team monitoring the contractor's software
integration and verification testing. The purpose of this best practice is to determine
the adequacy of the contractor team's software integration and verification testing so
that corrective actions can be taken, if needed, to improve the fidelity of the software
test program. Another purpose is for the acquisition team to assist the contractor in
identifying defects discovered during testing. As with technical product reviews, the
acquisition team generally must focus its limited technical resources where monitor-
ing of testing provides the highest risk reduction potential. Results of monitoring a
sampling of software integration and verification testing can be used to predict qual-
ity trends across all software testing performed by the same software team member.
The effectiveness of this best practice is increased when the software test plan and
procedures have been reviewed in-depth by the acquisition team before the formal
testing takes place (see above best practice).

The purpose of software integration testing is to find defects so that they can be fixed
before the software is used in higher levels of testing (e.g., space vehicle, segment,
system), while the purpose of software verification testing is to verify that the soft-
ware meets its requirements. The most effective application of acquisition team
resources for this best practice is for the acquisition team to monitor the build inte-
gration testing for each build and to monitor the software verification testing.

Monitoring of testing involves ensuring that the test procedures are conducted as
written, that any deviations from what is expected are documented, and that all
results are captured. In addition, the acquisition team personnel should participate in
the data analysis activity to help determine whether the software performs as
expected and whether the software meets its requirements. Frequently, defects that
are not recognized by the contractor's test personnel are identified by the acquisition
team. This is due to the acquisition team's experience and operational perspective.
One of the most important goals for the acquisition team during monitoring software
integration and verification testing at the build level is obtaining early performance
analysis results and early determination as to whether the KPPs are being met. The
acquisition team needs to ensure that the software integration and verification testing
addresses these important issues.

Include Users and Operators in All Technical Review Activities

This best practice involves including user and operator personnel in the technical
software product reviews throughout the life cycle. Qualified user and operator
stakeholders should be involved in the in-depth technical reviews of the software
products [especially the software requirements, software architecture and design
(including the human-computer interface design, algorithm design, and critical
interface design), the software verification test products, and the O&M products], and
in monitoring the integration and verification testing of the software. The effective

20

application of this best practice requires consistent and continuous participation of
qualified user and operator personnel and a good working relationship between the
acquisition team, contractor, and user and operator personnel.

Close involvement of the user and operator stakeholders throughout the software
development life cycle will reduce rework due to misinterpretations by the contractor
of user and operator requirements and needs. In addition, participation by qualified
user and operator personnel and their technical support contractors in software prod-
uct reviews can assist the contractor in identifying and correcting product defects
early in the life cycle. Close involvement of the user and operator stakeholders in
software verification testing can also assist the contractor in defect identification, and
can provide an early assessment of the suitability of the software products for meet-
ing operational needs.

3.2.2 Performing Software Process Reviews
There are two software acquisition best practices associated with performing software process
reviews as described below.

Review the Effectiveness of the Contractor's Software Processes

This best practice involves the acquisition team evaluating the effectiveness of the
software processes being used by the contractor throughout the development life
cycle. These best practice's software process reviews are informal process reviews
performed by the acquisition team as they work with the contractor throughout the
software development effort (rather than formal software capability appraisals). The
objective of acquisition team reviews of the contractor's software processes is to
assist the contractor in improving their software development processes. Since the
quality of the software products is highly dependent on the quality of the processes
used to develop those products, performing acquisition team software processes
reviews is a software quality enhancement activity.

There are two aspects to be addressed in these acquisition team software process
reviews. The first aspect is whether the contractor is adhering to the software proc-
esses they have defined and documented for the program (e.g., in the SDP and other
program software process documents). For this aspect of the review, the acquisition
team identifies process adherence deficiencies and assists the contractor in correcting
these deficiencies. The second aspect is whether the contractor's defined software
development processes are effective. For this aspect of the review, the acquisition
team reviews the contractor's defined software processes for the program to deter-
mine whether these processes are effective, identifies process deficiencies, and rec-
ommends improvement actions. A frequently encountered example is peer reviews
that are performed but are not effective at finding significant defects (only trivial
defects are found). An acquisition team software process review may determine that
the participants do not have enough time to prepare for the peer reviews, that too
much material is being reviewed in a single meeting, that adequate review checklists

21

are not available, or that the review meetings are held without all of the essential
review participants being present. Each of the identified causes for lack of effective-
ness should lead to an improvement recommendation by the acquisition team. It
should be noted here that process adherence to SW-CMM or CMMI processes at
Level 3 or above that are defined by each contractor team member performing soft-
ware development may not be effective for the program due to the problem of inte-
grating these processes across the team member boundaries.

The most effective application of this best practice occurs when the contract incen-
tives (e.g., award fee) reward the contractor team for adherence to their defined soft-
ware development processes, for implementing software process improvement on the
program to improve the effectiveness of their processes, and for the timeliness and
adequacy of their responsiveness to comments from Government software process
reviews (see paragraph 3.1.5).

Perform Periodic Software Capability Appraisals

This best practice involves conducting formal contract process monitoring software
capability appraisals of the contractor at periodic intervals throughout the develop-
ment life cycle. The objective of this best practice is to ensure that the contractor is
actually using the program's defined software development processes and is applying
software engineering best practices on the software being implemented for the
program.

To apply this best practice, the contract must require the contractor to undergo these
appraisals (see paragraph 3.1.5). Once this contractual requirement for periodic
software capability appraisals is established, the acquisition team needs to follow
through and conduct the appraisals as specified in the contract. It is important that
these appraisals be conducted on the entire contractor team performing software
development, rather than on each software team member individually. While the fre-
quency of the periodic appraisals must be specified in the contract, the actual sched-
ule for conducting the appraisals is usually negotiated with the contractor. On the
one hand, the appraisals should be conducted so as not to interfere with major con-
tract events, but on the other hand, they should be scheduled so that they support sig-
nificant program or award fee milestones. The most effective application of this best
practice occurs when the results of the appraisals and the timeliness and adequacy of
any resulting improvement actions are included in the contract incentives (e.g., the
award fee plan). More information on these appraisals is found is paragraph 3.1.5
above.

3.2.3 Managing the Contract

There are four software acquisition best practices associated with managing the contract as described
below.

22

Ensure Satisfaction of Software-Inclusive Requirements

This best practice involves ensuring that the contractor includes allocating
the software-inclusive contractual requirements (see paragraph 3.1.1) to software
components as well as hardware components when designing and developing the
system. In addition, this best practice includes ensuring that software is included as
well as hardware when verifying that the software-inclusive system requirements are
met. The objective of this best practice is to ensure that the system, which includes
both hardware and software, meets its requirements when fielded in the operational
environment. To meet this objective, the acquisition team must ensure that the con-
tractor is not taking a hardware-only approach to any of the software-inclusive sys-
tem requirements as the design, implementation, integration, and verification proceed
throughout the development life cycle. The acquisition team must be especially
watchful of the contractor's approach to the satisfaction of software-inclusive KPPs
since not meeting the KPPs can be used as justification for program cancellation.

Contractors have historically been especially deficient about including software in
the analyses of the system's specialty engineering requirements (including DRMA;
supportability, including testability and integrated system diagnostics; safety; secu-
rity; and human systems integration). In particular, contractors frequently assume
that software does not contribute to dependability, reliability, maintainability, and
availability; and, therefore, they allocate these requirements only to hardware com-
ponents. Because of this assumption, failures caused by software are not included in
the estimations of dependability and reliability, and the times for returning the soft-
ware to an operational state following hardware or software failures are not included
in the maintainability and availability estimates. If the acquisition team agrees with
this approach and allows the DRMA requirements to be satisfied with only hardware
contributions, the operationally experienced DRMA will be significantly less than
specified in the requirements due to the contributions of software. This can result in
the software-intensive system not being suitable for operations. A hardware-only
approach to DRMA can be especially detrimental if any of the DRMA requirements
are program KPPs.

Aggressively Use Contract Incentives to Reward Software Quality

This best practice involves the Government aggressively using the contract incentives
to motivate the contractor to use software engineering best practices and produce
high-quality software products. The application of this best practice requires criteria
related to software quality to have been built into the contractual award and incentive
fee plans (see paragraph 3.1.5). This best practice, therefore, consists of actually
using the contract management tools of award and incentive fees to achieve the
desired result of software that is of sufficiently high quality to be suitable for use in a
high-reliability, high-integrity, software-intensive space system.

23

Effective application of this best practice requires the Government to commit to
aggressive action in using the contract incentives. The Government must be willing
to significantly reward the contractor for using software engineering best practices
and, correspondingly, to significantly penalize the contractor for process non-compli-
ance and poor quality software products. Technical reviews of software products and
processes by the acquisition team (see paragraphs 3.2.1 and 3.2.2) are effective
mechanisms for providing input on software product and process quality to the award
and incentive fee process.

Perform Periodic Independent Assessments

This best practice involves the Government establishing an independent assessment
team periodically throughout the development life cycle. The usual charter of an
independent assessment team includes identifying problems and risks in the software
development project, assessing actual software status and performance, and devel-
oping solutions to critical problems. Frequently, programs constitute independent
assessment teams only when significant problems in the software development effort
emerge. While this is an appropriate use of an independent assessment team, it is a
reactive use rather than a proactive one. This best practice requires the Government
to establish independent assessment teams periodically throughout the development
effort (e.g., at significant program or award fee milestones) before problems have
become apparent.

An independent assessment team consists of highly qualified technical personnel who
are not directly involved in supporting the program on a routine basis. Frequently,
acquisition team personnel who are deeply involved in the program on a day-to-day
basis become too close to the program to step back and take an objective, truly inde-
pendent view. The different perspective of the independent assessment team and
absence of close program ties can allow the team to identify risks and problems and
develop mitigation actions and solutions that the acquisition team and contractor per-
sonnel have not been able to see.

Effective application of this best practice requires the Government to take strong
action based on the findings of the independent assessment team. Timely response
can allow effective risk mitigation to be put into place and problems to be solved
earlier rather than later when the solutions are more difficult and costly.

Apply Proactive Quantitative Management

This best practice involves the acquisition team proactively using contractor metrics
data to manage the software acquisition. This best practice requires acquisition team
personnel with metrics expertise to analyze the delivered monthly metrics reports
(see paragraph 3.1.2) in the context of what they see happening day-to-day on the
software development effort. This includes cross-metric analysis, as well as analysis
of individual metrics, for the entire software development effort for all software team

24

members. Software and system metrics analysis can identify potential and actual
problem areas that can then be examined in more detail to put effective risk mitiga-
tion actions and solutions in place. Metrics data provide high-level visibility into the
health and status of the evolving software system and lower level visibility for timely
problem detection, isolation, and impact assessment. In addition, metrics data pro-
vide a summarization of the planning assumptions into quantitative data that allow
clear visibility of these assumptions and their implications. To be proactive, this best
practice requires action on the part of the acquisition team to address risks and prob-
lems identified by the metrics analysis.

The effective application of this best practice requires the contractor to have a robust,
comprehensive software and system metrics program. The DoD Practical Software
and System Measurement (PSM) initiative 6 has developed excellent guidance for
implementing such a metrics program. The acquisition team must work closely with
the contractor in defining the metrics data to be collected and reported to ensure that
the contractor's metrics program addresses the acquisition team's information needs
as well as the contractor's. The metrics data that are collected and reported need to
be balanced across all information categories. The PSM information categories are
size and stability, resources and cost, schedule and progress, process performance,
product quality, technical effectiveness, and customer satisfaction. Frequently the
contractor's metrics program emphasizes schedule and progress metrics to the exclu-
sion of other important information. This is sometimes indicative of a Government
emphasis on meeting schedule and of contract incentives that reward meeting sched-
ule and do not reward quality. In particular, the collected and reported metrics data
need to include leading indicators of quality problems that are effective predictors of
downstream rework. Earned value data alone are not sufficient for managing the
acquisition of large, complex software-intensive systems. The SMC/NRO Software
Process IPT has developed guidance for the acquisition team on metrics-based
software acquisition management [Abelson, L. A. et al., 2004].

3.3 Full Life Cycle Software Acquisition Best Practices
"There are two software acquisition best practices that span the entire program life cycle: software
acquisition risk management and software systems acquisition.

Software Acquisition Risk Management

This best practice involves the Government performing software acquisition risk
management as an integral part of its program acquisition risk management. Soft-
ware acquisition risk management is an effective mechanism for reducing the impact
of potential problems on the acquisition of a software-intensive system. Software
acquisition risk management involves a continuous process of risk identification,
assessment, prioritization, mitigation, and control throughout the life cycle of the
program, from the identification of needed capability through retirement.

6 See www.psmsc.com for more information about the Practical Software and System Measurement initiative.

25

The use of software acquisition risk management enables the acquisition team to
understand its risks (i.e., future problems that might occur) and, where possible, to
mitigate the risks that are assessed to have the largest potential impact on the soft-
ware-intensive system acquisition. Effective software acquisition risk management
can result in reducing the cost and schedule impact of problems by having alternative
solutions or workarounds identified before problems occur. Software acquisition risk
management by the acquisition team is necessary in addition to software develop-
ment risk management by the contractor. The contractor's software development
risks are almost always software acquisition risks. However, the Government acqui-
sition organization responsible for acquiring the software-intensive system generally
has additional risks as well (e.g., risks related to staffing of the acquisition team and
risks related to program Key Decision Points). Furthermore, the acquisition team
frequently will identify additional software development risks and will assess the
importance of the contractor-identified software development risks differently than
the contractor. In addition, risk mitigation efforts performed by the acquisition team
can assist the contractor in their risk mitigation efforts.

To be effective, the software acquisition risk management process must be practiced
by all acquisition team personnel and at all levels of the software acquisition project.
Large programs frequently have a risk management process at the program level with
the top program risks being closely monitored by Government program management.
Just as frequently, however, the only risk management process practiced on large,
complex software-intensive programs is the program-level process. An effective
software acquisition risk management process must be practiced at every level of the
software acquisition project, including the lowest level of the acquisition team. The
acquisition team should use the software acquisition risk management process to
identify its risks, mitigate and control those risks that are within its scope of control,
and elevate those risks with sufficiently high impact to the program-level risk
management process.

Software-Inclusive Systems Acquisition

This best practice involves the inclusion of software acquisition as an integral part of
the acquisition of software-intensive systems. Software acquisition team personnel
must be knowledgeable and must participate in the systems acquisition processes
throughout the entire life cycle, from the identification of needed capability through
retirement. In addition, the software acquisition processes must be consistent and
integrated with the systems acquisition processes.

It is very important for software acquisition to be an integral part of the system acqui-
sition's pre-contract award activities, especially in defining the system acquisition
and support strategies and in preparing the system performance requirements and
RFP. Without effective participation of software acquisition team personnel in the
pre-contract award activities, the selected contractor may not be capable of perform-
ing the software development effort, the system performance requirements may not
include necessary software-related requirements, and the contract resulting from the

26

procurement may not be structured to encourage the contractor to follow well-
disciplined software development processes and produce high-quality software prod-
ucts. Post-contract award software acquisition must be an integral part of the system
acquisition contract management activities, especially for award and incentive fee
determination, to encourage the best software development performance from the
contractor.

The effective incorporation of software acquisition as an integral part of the systems
acquisition processes requires positive action by the Government program manage-
ment. Government program management must establish an environment where the
software acquisition is a highly respected part of the program, equivalent in impor-
tance to the hardware acquisition. In addition, the Government program must be
structured to provide effective lines of communication, responsibility, and authority
among the software acquisition team and the other program teams involved in the
systems acquisition processes.

27

4. Conclusions

This report describes a set of software acquisition best practices that the authors have identified,
through experience, as being significant contributors to the successful acquisition of software-inten-
sive systems. These software acquisition best practices, however, are not a panacea; that is, they do
not guarantee a successful acquisition since there are a great many influences that can adversely affect
large, complex, software-intensive system acquisitions. Rather, this set of best practices reduces risk
in software-intensive system acquisition by providing tools that: (1) enable software to be properly
integrated into the system development contract, (2) provide appropriate levels of insight into the
contractor team's technical and management software products and processes, and (3) support proac-
tive contract management.

This report does not advocate returning to either the pre-acquisition reform environment of the 1980s
to early 1990s or the subsequent acquisition reform era that began in the mid 1990s. The software
acquisition best practices described in this report strike a balance between these two extremes by rec-
ommending contractual requirements and oversight in those areas determined to provide the largest
risk reduction benefit.

The software acquisition best practices are most effectively implemented within the context of a
software acquisition process improvement program. Using the framework of a software acquisition
process improvement program, software acquisition processes based on best practices can be defined,
documented, measured, and improved. The most rigorous type of process improvement program uses
a formal process model, such as the Capability Maturity Models developed by the SEI. The Software
Acquisition Capability Maturity Model (SA-CMM) is the formal process model currently in use for
the software acquisition discipline since the disciplines of software and system acquisition have not
yet been incorporated into the CMMI models. The SEI has recently published an acquisition module
for the CMMI [Bernard, T. et al., 2004]. However, this module is not yet fully developed.

In FY03, the U. S. Congress required each military department to establish software acquisition proc-
ess improvement programs (Section 804 of the Bob Stump National Defense Authorization Act of
Fiscal Year 2003). Subsequent DoD direction for implementing Section 804 was provided in a policy
memo from the Undersecretary of Defense for Acquisition, Technology and Logistics and the Assis-
tant Secretary of Defense for Command, Control, Communication and Intelligence[Aldridge and
Stenbrit, 2003]. Per this memorandum, the software acquisition process improvement programs are
to address the following software acquisition process areas, at a minimum:

"* Acquisition Planning

"* Requirements Development and Management

"* Configuration Management

"• Risk Management

29

"* Risk Management

"* Project Management and Oversight

"* Test and Evaluation

"* Integrated Team Management

"* Solicitation and Source Selection

Each of the best practices in this report applies to at least one of these software acquisition process
areas.

30

References

Abelson, L. A., R. J. Adams, and S. Esliinger, "Metrics-Based Software Acquisition Management,"
The Aerospace Corporation, TOR-2004(3909)-3405, 5 May 2004.

Adams, R. J., S. Eslinger, P. Hantos, K. L. Owens, L. T. Stephenson, and R. Weiskipf,
"Recommended Software Standards for Space Systems," The Aerospace Corporation, TOR-
2004(3909)-3406, 5 May 2004a.

Adams, R. J., S. Eslinger, P. Hantos, K. L. Owens, L. T. Stephenson, J. Tagami, and R. Weiskipf,
"Software Development Standard for Space Systems, The Aerospace Corporation, TOR-
2004(3909)-3537, 20 July 2004b.

Air Force Materiel Command, Software Development Capability Evaluation, Volumes 1 and 2,
AFMCP 63-103, 15 June 1994.

Aldridge, E., and J. Stenbit, Software Acquisition Process Improvement Programs, Office of the Sec-
retary of Defense Memorandum, 21 March 2003.

Barbour, R., M. Benhoff, B. Gallagher, S. Eslinger, T. Bernard, L. Ming, L. Rosa, and C. Ryan, Stan-
dard CMMI® Appraisal Method for Process Improvement (SCAMPISM), Version 1.1: Method
Implementation Guidance for Government Source Selection and Contract Process Monitoring,
Software Engineering Institute, Carnegie-Mellon University, CMU/SEI-2002-HB-002, Sep-
tember 2002.

Bernard, T., B. Gallagher, R. Bate, and H. Wilson, "CCMI® Acquisition Module (CMMI-AM),"
Version 1.0, Software Engineering Institute, Carnegie Mellon University, CMU/SEI-2004-TR-
001, February 2004.

Byrnes, P., and M. Phillips, Software Capability Evaluation (SCEsM) Version 3.0 Method
Description, Software Engineering Institute, Carnegie-Mellon University, CMU/SEI-96-TR-2,
April 1996.

Chrissis, M., M. Konrad, and S. Shrum, CMMI®: Guidelines for Process Integration and Product
Improvement, Addison-Wesley, 2003.

DoD Software Program Manager's Network, The Program Manager's Guide to Software Acquisition
Best Practices, Version 2.31.

Gallagher, B., C. Alberts, and R. Barbour, Software Acquisition Risk Management Key Process Area
(KPA) - A Guidebook, Version 1.0, Software Engineering Institute, Carnegie Mellon Univer-
sity, CMU/SEI-97-HB-002, August 1997.

IEEE/EIA Interim Standard J-STD-0I16-1995, Standard for Information Technology, Software Life
Cycle Processes, Software Development Acquirer-Supplier Agreement, 30 September 1995.

31

Paulk, M., C. Weber, B. Curtis, and M. Chrissis, The Capability Maturity Model®: Guidelines for
Improving the Software Process, Addison-Wesley, 1994.

J. McGarry, D. Card, C. Jones, B. Layman, E. Clark, J. Dean, and F. Hall, Practical Software Meas-
urement: Objective Information for Decision Makers, Addison-Wesley, 2001.

Software Engineering Institute. Capability Maturity Model® IntegrationsM, Version 1. 1, CMMI® for
Systems Engineering, Software Engineering, Integrated Product and Process Development, and
Supplier Sourcing (CMMI"-SE/SW/IPPD/SS, V1. 1), Continuous Representation, (SEI-2002-
TR-01 1), March 2002.

Software Engineering Institute. Capability Maturity Model® IntegrationsM, Version 1.1, CMMI® for
Systems Engineering, Software Engineering, Integrated Product and Process Development, and
Supplier Sourcing (CMMI®-SE/SW/IPPD/SS, V 1.1), Staged Representation, (SEI-2002-TR-
0 12), March 2002.

Software Engineering Institute, Software Acquisition Capability Maturity Model® (SA-CMM®), Ver-
sion 1.03, Software Engineering Institute, Carnegie-Mellon University, No. CMU/SEI-2002-
TR-0 10, March 2002.

Software Engineering Institute. Standard CMMI® Appraisal Method for Process Improvement
(SCAMPISM), Version 1.1: Method Definition Document, CMU/SEI-200 1 -HB-00 1, December
2001.

U.S. Congress, Bob Stump National Defense Authorization Act for Fiscal Year 2003.

32

Acronyms and Abbreviations

® Registered Trademark
Acq. Acquisition
AFMCP Air Force Materiel Command Pamphlet
CDR Critical Design Review
CDRL Contract Data Requirements List
CMM Capability Maturity Model
CMMI Capability Maturity Model Integration
CMU Carnegie Mellon University
COTS Commercial Off-the-Shelf
CSCI Computer Software Configuration Item
CSOW Contractor Statement of Work
DID Data Item Description
DoD Department of Defense
DRMA Dependability, Reliability, Maintainability and Availability
EIA Electronic Industries Alliance
Eng. Engineering
FFRDC Federally Funded Research and Development Center
FY Fiscal Year
H/W Hardware
HB Handbook
IEEE Institute of Electrical and Electronics Engineers, Inc.
IMP Integrated Management Plan
IPPD Integrated Product and Process Development
IPT Integrated Product Team
J Joint
KPA Key Process Area
KPP Key Performance Parameter
MIL Military
MOIE Mission-Oriented Investigation and Experimentation
NRO National Reconnaissance Office
PDR Preliminary Design Review
PSM Practical Software and System Measurement
RFP Request for Proposal
S/W Software
SA-CMM Software Acquisition Capability Maturity Model
SCAMPI Standard CMMI Appraisal Method for Process Improvement
SCE Software Capability Evaluation
SDCE Software Development Capability Evaluation
SDP Software Development Plan
SDR System Design Review
SE Systems Engineering
SEI Software Engineering Institute

33

SETA Systems Engineering and Technical Assistance
SLOC Source Lines of Code
SM Service Mark
SMC Space and Missile Systems Center
SOo Statement of Objectives
SOW Statement of Work
SS Supplier Sourcing
STD Standard
SW Software
SW-CMM Capability Maturity Model for Software
TR Technical Report
TRR Test Readiness Review
TSPR Total System Performance Responsibility
U.S. United States
USAF United States Air Force

34

